10 research outputs found

    A Geometric Approach for Deciphering Protein Structure from Cryo-EM Volumes

    Get PDF
    Electron Cryo-Microscopy or cryo-EM is an area that has received much attention in the recent past. Compared to the traditional methods of X-Ray Crystallography and NMR Spectroscopy, cryo-EM can be used to image much larger complexes, in many different conformations, and under a wide range of biochemical conditions. This is because it does not require the complex to be crystallisable. However, cryo-EM reconstructions are limited to intermediate resolutions, with the state-of-the-art being 3.6A, where secondary structure elements can be visually identified but not individual amino acid residues. This lack of atomic level resolution creates new computational challenges for protein structure identification. In this dissertation, we present a suite of geometric algorithms to address several aspects of protein modeling using cryo-EM density maps. Specifically, we develop novel methods to capture the shape of density volumes as geometric skeletons. We then use these skeletons to find secondary structure elements: SSEs) of a given protein, to identify the correspondence between these SSEs and those predicted from the primary sequence, and to register high-resolution protein structures onto the density volume. In addition, we designed and developed Gorgon, an interactive molecular modeling system, that integrates the above methods with other interactive routines to generate reliable and accurate protein backbone models

    Determining Alpha-Helix Correspondence for Protein Structure Prediction from Cryo-EM Density Maps, Master\u27s Thesis, May 2007

    Get PDF
    Determining protein structure is an important problem for structural biologists, which has received a significant amount of attention in the recent years. In this thesis, we describe a novel, shape-modeling approach as an intermediate step towards recovering 3D protein structures from volumetric images. The input to our method is a sequence of alpha-helices that make up a protein, and a low-resolution volumetric image of the protein where possible locations of alpha-helices have been detected. Our task is to identify the correspondence between the two sets of helices, which will shed light on how the protein folds in space. The central theme of our approach is to cast the correspondence problem as that of shape matching between the 3D volume and the 1D sequence. We model both the shapes as attributed relational graphs, and formulate a constrained inexact graph matching problem. To compute the matching, we developed an optimal algorithm based on the A*-search with several choices of heuristic functions. As demonstrated in a suite of real protein data, the shape-modeling approach is capable of correctly identifying helix correspondences in noise-abundant volumes with minimal or no user intervention

    Shape modeling and matching in identifying protein structure from low-resolution images

    No full text
    In this paper, we describe a novel, shape-modeling approach to recovering 3D protein structures from volumetric images. The input to our method is a sequence of alpha-helices that make up a protein, and a low-resolution volumetric image of the protein where possible locations of alpha-helices have been detected. Our task is to identify the correspondence between the two sets of helices, which will shed light on how the protein folds in space. The central theme of our approach is to cast the correspondence problem as that of shape matching between the 3D volume and the 1D sequence. We model both the shapes as attributed relational graphs, and formulate a constrained inexact graph matching problem. To compute the matching, we developed an optimal algorithm based on the A* search with several choices of heuristic functions. As demonstrated in a suite of real protein data, the shape-modeling approach is capable of correctly identifying helix correspondences in noise-abundant volumes with minimal or no user intervention

    Polygonizing Extremal Surfaces with Manifold Guarantees

    No full text
    Extremal surfaces are a class of implicit surfaces that have been found useful in a variety of geometry reconstruction applications. Compared to iso-surfaces, extremal surfaces are particularly challenging to construct in part due to the presence of boundaries and the lack of a consistent orientation. We present a novel, grid-based algorithm for constructing polygonal approximations of extremal surfaces that may be open or unorientable. The algorithm is simple to implement and applicable to both uniform and adaptive grid structures. More importantly, the resulting discrete surface preserves the structural property of the extremal surface in a grid-independent manner. The algorithm is applied to extract ridge surfaces from intensity volumes and reconstruct surfaces from point sets with unoriented normals. 1
    corecore